

GL4H-DQDY1xxxxM

QSFP-DD 400Gb/s PAM4 Direct Attached Cable

PRODUCT FEATURES

- Compatible with IEEE 802.3bj and IEEE 802.3cd
- Supports aggregate data rates of 400Gbps(PAM4)
- Optimized construction to minimize insertion loss and cross talk
- Pull-to-release slide latch design
- 28AWG through 30AWG cable
- Straight and break out assembly configurations available
- Customized cable braid termination limits EMI radiation
- Customizable EEPROM mapping for cable signature
- RoHS compliant

APPLICATIONS

- Switches, servers and routers
- Data Center networks
- Storage area networks
- High performance computing
- Telecommunication and wireless infrastructure
- Medical diagnostics and networking
- Test and measurement equipment

PRODUCT DESCRIPTION

FIBRECROSS's QSFP-DD passive copper cable assembly feature eight differential copper pairs, providing four data transmission channels at speeds up to 56Gbps (PAM4) per channel, and meets 400G Ethernet and InfiniBand Enhanced Data Rate (EDR) requirements. Available in a broad rang of wire gages-from 28AWG through 30AWG-this 400G copper cable assembly features low insertion loss and low cross talk. QSFP-DD uses PAM4 signals for transmission, which doubles the rate. However, there are more stringent requirements for cable insertion loss. For detailed requirements, please see High Speed Characteristics.

Ordering Information

Part Number	Description		
GL4H-DQDY13001M	100G QSFP28 DAC passive cable 30AWG 1m		
GL4H-DQDY13002M	100G QSFP28 DAC passive cable 30AWG 2m		
GL4H-DQDY1282.5M	100G QSFP28 DAC passive cable 28AWG 2.5m		

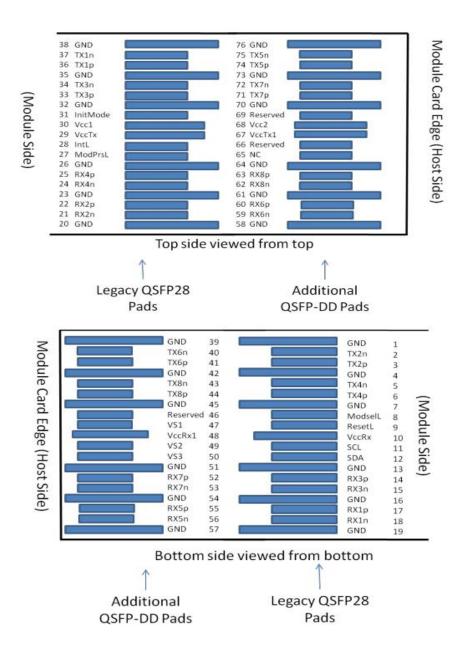
High Speed Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Note
Differential Impedance	TDR	90	100	110	Ώ	
Insertion loss	SDD21	-16.06		-8	dB	At 13.28 GHz
Differential Return Loss	SDD11	-12.45		See 1	dB	At 0.05 to 4.1 GHz
	SDD22	-3.12		See 2	dB	At 4.1 to 19 GHz
Common-mode to common-mode output return loss	SCC11 SCC22			-2	dB	At 0.2 to 19 GHz
Differential to common-mode return loss	SCD11 SCD22	-12		See 3	dB	At 0.01 to 12.89 GHz
returnoss		-10.58		See 4		At 12.89 to 19 GHz
Differential to common Made	SCD21-IL			-10	dB	At 0.01 to 12.89 GHz
Differential to common Mode Conversion Loss				See 5		At 12.89 to 15.7 GHz
				-6.3		At 15.7 to 19 GHz
Channel Operating Margin	COM			-3	dB	

Notes:

1. Reflection Coefficient given by equation SDD11(dB) < -16.5 + $2 \times$ SQRT(f), with f in GHz

2. Reflection Coefficient given by equation SDD11(dB) < -10.66 + 14 × log10(f/5.5), with f in GHz

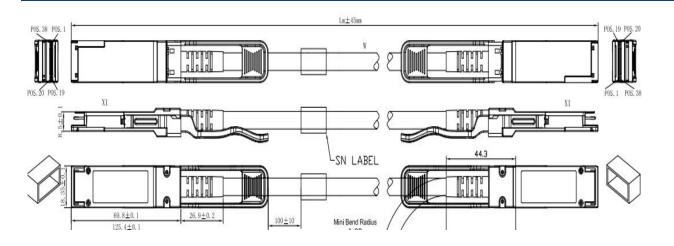

3. Reflection Coefficient given by equation SCD11(dB) < -22 + (20/25.78)*f, with f in GHz

4. Reflection Coefficient given by equation SCD11(dB) < -15 + (6/25.78)*f, with f in GHz

5. Reflection Coefficient given by equation SCD21(dB) < -27 + (29/22)*f, with f in GHz

Pin Function Definition

Pin	Logic	Symbol	Description	
1		GND	Ground	
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	
4		GND	Ground	
5	CML-I	Tx4n	Transmitter Inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	


7		GND	Ground	
8	LVTTL-I	ModSelL	Module Select	
9	LVTTL-I	ResetL	Module Reset	
10		Vcc Rx	+3.3V Power Supply Receiver	
11	LVCMOS-	SCL	2-wire serial interface clock	
12	LVCMOS- I/O	SDA	2-wire serial interface data	
13	•	GND	Ground	
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	
15	CML-O	Rx3n	Receiver Inverted Data Output	
16		GND	Ground	
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output	
19		GND	Ground	
20		GND	Ground	
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	
24	CML-O	Rx4n	Receiver Inverted Data Output	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		Vcc Tx	+3.3V Power supply transmitter	
30		Vcc1	+3.3V Power supply	
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	
34	CML-I	Tx3n	Transmitter Inverted Data Input	
35		GND	Ground	
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
37	CML-I	Tx1n	Transmitter Inverted Data Input	
38		GND	Ground	
39		GND	Ground	
40	CML-I	Tx6n	Transmitter Inverted Data Input	
41	CML-I	Тх6р	Transmitter Non-Inverted Data Input	
42		GND	Ground	
43	CML-I	Tx8n	Transmitter Inverted Data Input	
44	CML-I	Tx8p	Transmitter Non-Inverted Data Input	
45		GND	Ground	
46		Reserved		
47		VS1		

48		VccRx1	+3.3V Power supply	
49		VS2		
50		VS3		
51		GND	Ground	
52	CML-O	Rx7p	Receiver Non-Inverted Data Output	
53	CML-O	Rx7n	Receiver Inverted Data Output	
54		GND	Ground	
55	CML-O	Rx5p	Receiver Non-Inverted Data Output	
56	CML-O	Rx5n	Receiver Inverted Data Output	
57		GND	Ground	
58		GND	Ground	
59	CML-O	Rx6n	Receiver Inverted Data Output	
60	CML-O	Rx6p	Receiver Non-Inverted Data Output	
61		GND	Ground	
62	CML-O	Rx8n	Receiver Inverted Data Output	
63	CML-O	Rx8p	Receiver Non-Inverted Data Output	
64		GND	Ground	
65		NC		
66		Reserved		
67		VccTx1	+3.3V Power supply	
68		VCC2	+3.3V Power supply	
69		Reserved		
70		GND	Ground	
71	CML-I	Tx7p	Transmitter Non-Inverted Data Input	
72	CML-I	Tx7n	Transmitter Inverted Data Input	
73		GND	Ground	
74	CML-I	Tx5p	Transmitter Non-Inverted Data Input	
75	CML-I	Tx5n	Transmitter Inverted Data Input	
76		GND	Ground	

Mechanical Specifications

Regulatory Compliance

Item	Test Method	Performance	
Electrostatic Discharge (ESD) to the Electrical Pins	MIL-STD-883C Method 3015.7	Class 1(>2000 Volts)	
Electromagnetic Interference (EMI)	FCC Class B		
	CENELEC EN55022 Class B	Compliant with Standards	
	CISPR22 ITE Class B		
RF Immunity (RFI)	IEC61000-4-3	Typically Show no Measurable Effect from a 10V/m Field Swept from 80 to 1000MHz	
RoHS Compliance	RoHS Directive 2011/65/EU and it's Amendment Directives 6/6	RoHS 6 compliant	