

GL2H-DQ5Y1xxxxM

200G QSFP56 Direct Attach Cable - PAM4 Datasheet

General Description

QSFP56 passive copper cable assembly feature eight differential copper pairs, providing four data transmission channels at speeds up to 56Gbps(PAM4) per channel, and meets 200G Ethernet and InfiniBand High Data Rate(HDR) requirements. Available in a broad rang of wire gauges-from 26AWG through 30AWG-this 200G copper cable assembly features low insertion loss and low cross talk. QSFP56 uses PAM4 signals for transmission, which doubles the rate. However, there are more stringent requirements for cable insertion loss. For detailed requirements, please see High Speed Characteristics.

Designed for applications in the data center, networking and telecommunications markets that require a high speed, reliable cable assembly, this next generation product shares the same mating interface with QSFP+ form factor, making it backward compatible with existing QSFP ports.

Features and Benefits

- Compatible with IEEE 802.3bj and IEEE 802.3cd
- In accordance with the paging function in the protocol SFF-8636, paging can be selected 00H or 02H in 127 bytes
- Supports aggregate data rates of 200Gbps(PAM4)
- Optimized construction to minimize insertion loss and cross talk
- Backward compatible with existing QSFP+ connectors and cages
- Pull-to-release slide latch design
- 26AWG through 30AWG cable
- Straight and break out assembly configurations available
- Customized cable braid termination limits EMI radiation.
- Customizable EEPROM mapping for cable signature
- RoHS omplia

Product Applications

- Switches, servers and routers
- Data Center networks
- Storage area networks
- High performance computing
- Telecommunication and wireless infrastructure
- Medical diagnostics and networking
- Test and measurement equipment

Industry Standards

- 200G Ethernet(IEEE 802.3cd)
- InfiniBand HDR

www.fibrecross.com Page 1 of6

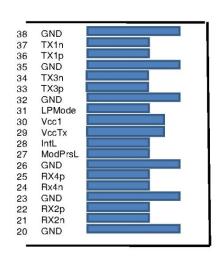
High Speed Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Note
Differential Impedance	TDR	90	100	110	Ω	
Insertion loss	SDD21	-17.16			dB	At 13.28 GHz
Differential Return Loss	SDD11			See 1	dB	At 0.05 to 4.1 GHz
Differential Neturn 2033	SDD22			See 2	dB	At 4.1 to 19 GHz
Common-mode to common-mode output return loss	SCC11 SCC22			-2	dB	At 0.2 to 19 GHz
Differential to common-mode return loss	SCD11 SCD22			See 3	dB	At 0.01 to 12.89 GHz
returnioss	SCD22			See 4		At 12.89 to 19 GHz
Differential to common Made	SCD21-IL			-10		At 0.01 to 12.89 GHz
Differential to common Mode Conversion Loss				See 5		At 12.89 to 15.7 GHz
03111313111233				-6.3		At 15.7 to 19 GHz

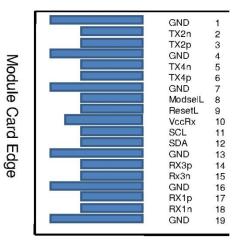
- 1. Reflection Coefficient given by equation SDD11(dB) < -16.5 + 2 × SQRT(f), with f in GHz
- 2. Reflection Coefficient given by equation SDD11(dB) < -10.66 + 14 × log10(f/5.5), with f in GHz
 3. Reflection Coefficient given by equation SCD11(dB) < -22 + (20/25.78)*f, with f in GHz
 4. Reflection Coefficient given by equation SCD11(dB) < -15 + (6/25.78)*f, with f in GHz

- 5. Reflection Coefficient given by equation SCD21(dB) < -27 + (29/22)*f, with f in GHz

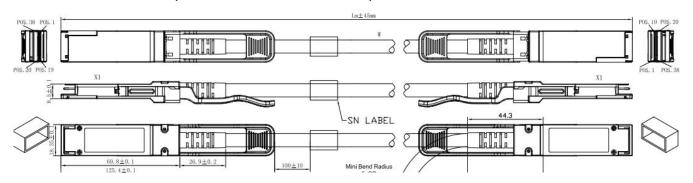
Pin Descriptions


QSFP56 Pin Function Definition

Pin	Logic	Symbol	Description
1		GND	Ground
2	CML-I	Tx2n	Transmitter Inverted Data Input
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input
4		GND	Ground
5	CML-I	Tx4n	Transmitter Inverted Data Input
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input
7		GND	Ground
8	LVTTL-I	ModSelL	Module Select
9	LVTTL-I	ResetL	Module Reset
10		Vcc Rx	+3.3V Power Supply Receiver


www.fibrecross.com Page 2 of6

11	LVCMOS- I/O	SCL	2-wire serial interface clock
12	LVCMOS- I/O	SDA	2-wire serial interface data
13		GND	Ground
14	CML-O	Rx3p	Receiver Non-Inverted Data Output
15	CML-O	Rx3n	Receiver Inverted Data Output
16		GND	Ground
17	CML-O	Rx1p	Receiver Non-Inverted Data Output
18	CML-O	Rx1n	Receiver Inverted Data Output
19		GND	Ground
20		GND	Ground
21	CML-O	Rx2n	Receiver Inverted Data Output
22	CML-O	Rx2p	Receiver Non-Inverted Data Output
23		GND	Ground
24	CML-O	Rx4n	Receiver Inverted Data Output
25	CML-O	Rx4p	Receiver Non-Inverted Data Output
26		GND	Ground
27	LVTTL-O	ModPrsL	Module Present
28	LVTTL-O	IntL	Interrupt
29		Vcc Tx	+3.3V Power supply transmitter
30		Vcc1	+3.3V Power supply
31	LVTTL-I	LPMode	Low Power Mode
32		GND	Ground
33	CML-I	Tx3p	Transmitter Non-Inverted Data Input
34	CML-I	Tx3n	Transmitter Inverted Data Input
35		GND	Ground
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input
37	CML-I	Tx1n	Transmitter Inverted Data Input
38		GND	Ground


Bottom Side Viewed From Bottom

www.fibrecross.com Page 3 of6

Mechanical Specifications

The connector is compatible with the SFF-8436 specification.

Length (m)	Cable AWG		
1	30		
2	26/30		
3	26		

Regulatory Compliance

се
olts)
0
ct from a
pt from
15/863
liant
_

www.fibrecross.com Page 4 of6